首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24710篇
  免费   4544篇
  国内免费   3219篇
化学   17466篇
晶体学   357篇
力学   1461篇
综合类   216篇
数学   3366篇
物理学   9607篇
  2024年   21篇
  2023年   506篇
  2022年   552篇
  2021年   817篇
  2020年   1143篇
  2019年   1082篇
  2018年   934篇
  2017年   936篇
  2016年   1323篇
  2015年   1290篇
  2014年   1493篇
  2013年   2015篇
  2012年   2317篇
  2011年   2358篇
  2010年   1710篇
  2009年   1566篇
  2008年   1696篇
  2007年   1464篇
  2006年   1268篇
  2005年   1146篇
  2004年   913篇
  2003年   765篇
  2002年   817篇
  2001年   625篇
  2000年   478篇
  1999年   480篇
  1998年   359篇
  1997年   341篇
  1996年   359篇
  1995年   334篇
  1994年   251篇
  1993年   185篇
  1992年   177篇
  1991年   170篇
  1990年   129篇
  1989年   101篇
  1988年   55篇
  1987年   57篇
  1986年   74篇
  1985年   54篇
  1984年   33篇
  1983年   31篇
  1982年   17篇
  1981年   11篇
  1980年   8篇
  1975年   2篇
  1974年   1篇
  1969年   1篇
  1957年   4篇
  1936年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
In this work, the potential of using coconut shell, which is very cheap and readily available, for the production of graphitic nanocarbon three-dimensional networks is investigated. The three-dimensional carbon has been produced via the wet-impregnation of coconut shell powder with a transition metal catalyst. The novel process employed offers low costs and environmental advantages, with biological waste used in place of carbonaceous precursor as the feedstock. Nanocarbon/tin oxide composites were prepared via wet-impregnation and the solvothermal method, using tin chloride solution with the activated nanocarbon. The electrochemical performances of the three-dimensional nanocarbon doped with tin oxide and of activated nanocarbon alone as anode materials were investigated in rechargeable lithium ion batteries. One composite made by using the solvothermal method shows stable cyclic retention up to 100 cycles and delivers a high reversible capacity of about 405?mAh g?1.  相似文献   
992.
An amperometric biosensor based on horseradish peroxidase (HRP) and ??-Al2O3/chitosan composite film at a glassy carbon electrode has been developed. Hydrogen peroxide (H2O2) was detected with the aid of ferrocene monocarboxylic acid mediator to transfer electrons between the electrode and HRP. The morphology and composition of the modified electrode were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The electrochemical characteristics of the biosensor were studied by cyclic voltammetry and amperometry. The effects of HRP concentration, the applied potential, and the pH values of the buffer solution on the response of the sensor were investigated for optimum analytical performance. The proposed biosensor showed high sensitivity (0.249?A M?1?cm?2) and a fast response (<5?s) to H2O2 with the detection limit of 0.07???M. The linear response range of the enzyme electrode to H2O2 concentration was from 0.5 to 700???M with a correlation coefficient of 0.9998. The apparent Michaelis-Menten constant of the biosensor was calculated to be 0.818?mM, exhibiting a high enzymatic activity and affinity for H2O2.  相似文献   
993.

Abstract  

An extensive series of pyrazabole chromophores containing pseudo-conjugated systems have been theoretically constructed and investigated on the one-photon absorption (OPA) and two-photon absorption (TPA) properties by using density functional theory and Zerner’s intermediate neglect of differential overlap methods. The results indicated that all the pyrazabole chromophores show strong OPA at around 400 nm and intense TPA properties in the range of 500–600 nm with TPA cross sections (δ max) as large as 540–3,560 GM, which are excellent candidates for optical power limiting materials. It is noteworthy that the δ max values of the two constructed pyrazaboles, PA3 and PAF2, are 308.8 GM at 772.0 nm and 157.8 GM at 834.4 nm, respectively, which may be particularly attractive as probes for two-photon fluorescence imaging. The influence of incorporating electron acceptors in the central core, π-conjugated bridge and terminal groups on OPA and TPA properties was analyzed in detail to derive structure–property relationships and to lay the guidelines for both spectral tuning and amplification of molecular TPA in the target region. Meanwhile, the solvent effects on these properties were taken into account within the PCM model. The solvent has a significant impact on the TPA properties for chromophore PA3 and leads to the two-photon absorption spectra (λ max T ) red-shift and δ max enhancing relative to those in gas phase. In addition, from the calculations of molecule AlA2, we can draw the conclusion that the compounds with the Al2N4 center behave similarly to pyrazabole chromophores in the linear optical and TPA properties and increase TPA cross sections to some extent.  相似文献   
994.
Two novel photochromic compounds, 1,3‐diphenyl‐4‐benzal‐5‐hydroxypyrazole 4‐phenylsemicarbazone ( 1 a ) and 1,3‐diphenyl‐4‐(4‐nitrobenzal)‐5‐hydroxypyrazole 4‐phenylsemicarbazone ( 2 a ), are synthesized and characterized by elemental analysis, mass spectrometry, FTIR spectroscopy, and 1H NMR spectroscopy. Their properties, including photochromic behavior, fluorescence properties, and thermal bleaching kinetics, are investigated. The results show that the two compounds exhibit improved photochromic performance in coloration and thermal bleaching rates, excellent photostability, high fatigue resistance, and reversible fluorescence switching properties in the solid state in comparison to reported pyrazolone thiosemicarbazones. The thermal bleaching process obeys first‐order kinetics. Bleaching of powders at 130 °C is completed within 90 s for 1 b (the colored isomer of 1 a ) and 150 s for 2 b (the colored isomer of 2 a ). The activation energy for the thermal bleaching process is determined to be 69 and 95 kJ mol?1, with frequency factors of 9.5×107 and 9.4×1010 s?1 for 1 b and 2 b , respectively.  相似文献   
995.
The latest advances in the area of polyoxometalate (POM)‐based inorganic/organic hybrid materials prepared by self‐assembly, covalent modification, and supramolecular interactions are presented. This Review is composed of five sections and documents the effect of organic cations on the formation of novel POMs, surfactant encapsulated POM‐based hybrids, polymeric POM/organic hybrid materials, POMs‐containing ionic crystals, and covalently functionalized POMs. In addition to their role in the charge‐balancing, of anionic POMs, the crucial role of organic cations in the formation and functionalization of POM‐based hybrid materials is discussed. DOI 10.1002/tcr.201100002  相似文献   
996.
Chiral binuclear gold(I) phosphine complexes catalyze enantioselective intermolecular hydroarylation of allenes with indoles in high product yields (up to 90 %) and with moderate enantioselectivities (up to 63 % ee). Among the gold(I) complexes examined, better ee values were obtained with binuclear gold(I) complexes, which displayed intramolecular AuI AuI interactions. The binuclear gold(I) complex 4c [(AuCl)2( L3 )] with chiral biaryl phosphine ligand (S)‐(−)‐MeO‐biphep ( L3 ) is the most efficient catalyst and gives the best ee value of up to 63 %. Substituents on the allene reactants have a slight effect on the enantioselectivity of the reaction. Electron‐withdrawing groups on the indole substrates decrease the enantioselectivity of the reaction. The relative reaction rates of the hydroarylation of 4‐X‐substituted 1,3‐diarylallenes with N‐methylindole in the presence of catalyst 4c [(AuCl)2( L3 )] / AgOTf [ L3 =(S)‐(−)‐MeO‐biphep], determined through competition experiments, correlate (r2=0.996) with the substituent constants σ. The slope value is −2.30, revealing both the build‐up of positive charge at the allene and electrophilic nature of the reactive AuI species. Two plausible reaction pathways were investigated by density functional theory calculations, one pathway involving intermolecular nucleophilic addition of free indole to aurated allene intermediate and another pathway involving intramolecular nucleophilic addition of aurated indole to allene via diaurated intermediate E2 . Calculated results revealed that the reaction likely proceeds via the first pathway with a lower activation energy. The role of AuI AuI interactions in affecting the enantioselectivity is discussed.  相似文献   
997.
Bovine serum albumin (BSA)‐conjugated MxSey (M=Ag, Cd, Pb, Cu) nanomaterials with different shapes and sizes were synthesized in water at room temperature by a protein‐directed, solution‐phase, green synthetic method. The method features very low energy consumption and nontoxic reagents with high yields of concentrated nanoparticles. The obtained bioconjugated nanoparticles have good dispersibility, bioactivity, and biocompatibility. In addition, various functional groups of protein on the surface of the nanocrystals are suitable for further biological interactions or couplings, which is very important for further biological applications.  相似文献   
998.
Asymmetric [3+2] cycloaddition of α‐aminoester Schiff bases with substituted olefins is one of the most efficient methods for the preparation of chiral pyrrolidine derivatives in optically pure form. In spite of its potential utility, applicable substrates for this method have been limited to Schiff bases that bear relatively acidic α‐hydrogen atoms. Here we report a chiral silver amide complex for asymmetric [3+2] cycloaddition reactions. A silver complex prepared from silver bis(trimethylsilyl)amide (AgHMDS) and (R)‐DTBM‐SEGPHOS worked well in asymmetric [3+2] cycloaddition reactions of α‐aminoester Schiff bases with several olefins to afford the corresponding pyrrolidine derivatives in high yields with remarkable exo‐ and enantioselectivities. Furthermore, α‐aminophosphonate Schiff bases, which have less acidic α‐hydrogen atoms, also reacted with olefins with high exo‐ and enantioselectivities. The stereoselectivities of the [3+2] cycloadditions with maleate and fumarate suggested that the reaction proceeded by means of a concerted mechanism. An NMR spectroscopic study indicated that complexation of AgHMDS with the bisphosphine ligand was not complete, and that free AgHMDS, which did not show any significant catalytic activity, existed in the catalyst solution. This means that significant ligand acceleration occurred in the current reaction system.  相似文献   
999.
采用密度泛函理论的B3LYP方法,在6-31+G*基组水平上研究了儿茶素-胞嘧啶分子间相互作用机制,得到稳定的儿茶素-胞嘧啶复合物11个.计算结果表明氢键对于复合物的稳定性起着重要的作用,并且当复合物形成2个或更多的氢键时,氢键的类型及强度共同决定着复合物的稳定性.我们还应用了分子中的原子(AIM)理论和自然键轨道(NBO)理论对这11种复合物中氢键的性质和特征进行了分析.通过研究发现,所有的氢键复合物进行基组重叠误差(BSSE)校正后的相互作用能为-17.35~-43.27kJ/mol,相互作用能主要由氢键所贡献.振动分析显示,氢键的形成使相对应键的对称伸缩振动频率减小,说明这些复合物中形成的氢键都是正常的红移型氢键,与实验结果相一致.  相似文献   
1000.
The method of native chemical ligation between an unprotected peptide α‐thioester and an N‐terminal cysteine–peptide to give a native peptide in aqueous solution is one of the most effective peptide ligation methods. In this work, a systematic theoretical study was carried out to fully understand the detailed mechanism of ligation. It was found that for the conventional native chemical ligation reaction between a peptide thioalkyl ester and a cysteine in combination with an added aryl thiol as catalyst, both the thiol‐thioester exchange step and the transthioesterification step proceed by an anionic concerted SN2 displacement mechanism, whereas the intramolecular rearrangement proceeds by an addition–elimination mechanism, and the rate‐limiting step is the thiol‐thioester exchange step. The theoretical method was then extended to study the detailed mechanism of the auxiliary‐mediated peptide ligation between a peptide thiophenyl ester and an N‐2‐mercaptobenzyl peptide in which both the thiol‐thioester exchange step and intramolecular acyl‐transfer step proceed by a concerted SN2‐type displacement mechanism. The energy barrier of the thiol‐thioester exchange step depends on the side‐chain steric hindrance of the C‐terminal amino acid, whereas that of the acyl‐transfer step depends on the side‐chain steric hindrance of the N‐terminal amino acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号